Задача поезд навстречу друг другу время встречи

Задачи на встречное движение

В задачах на движение рассматриваются три взаимосвязанные величины:

S — расстояние (пройденный путь),

t — время движения и

V — скорость – расстояние, пройденное за единицу времени.

Расстояние – это произведение скорости на время движения

Скорость — это частное от деления расстояния на время движения

Время – это частное от деления расстояния на скорость движения

Задачи на встречное движение

Если два тела одновременно движутся навстречу друг другу, то расстояние между ними постоянно изменяется на одно и то же число, равное сумме расстояний, которые проходят тела за единицу времени.

Скорость сближения – это сумма скоростей, движущихся навстречу друг другу тел. V сближ. = 1V + 2V

Пример 1. Два велосипедиста одновременно выехали навстречу друг другу из двух посёлков и встретились через 3 часа. Первый велосипедист ехал со скоростью 12 км/ч, а второй – 14 км/ч. На каком расстоянии находятся посёлки?

V сближ. = 1V + 2V

1) 12 • 3 = 36 (км) – проехал первый велосипедист до встречи

2) 14 • 3 = 42 (км) – проехал второй велосипедист до встречи

3) 36 + 42 = 78 (км)

1) 12 + 14 = 26 (км/ч) – скорость сближения

Ответ : расстояние между посёлками 78 км.

Пример 2. Из двух городов навстречу друг другу выехали две машины. Скорость первой – 80 км/ч, скорость второй – 60 км/ч. Через, сколько часов машины встретятся, если расстояние между городами 280 км?

V сближ. = 1V + 2V

1) 80 + 60 = 140 (км/ч) – скорость сближения

2) 280 : 140 = 2 (ч)

Ответ : машины встретятся через 2 часа.

Пример 3. Из двух городов, расстояние между которыми 340 км, выехали одновременно навстречу друг другу две машины. Скорость первой – 80 км/ч. С какой скоростью ехала вторая машина, если встретились они через 2 часа?

2V = V сближ. — 1V

1) 340 : 2 = 170 (км/ч) – скорость сближения

2) 170 – 80 = 90 (км/ч)

Ответ : 90 км/ч. скорость второй машины

Задачи на движение в противоположных направлениях

Если два тела одновременно движутся в противоположных направлениях, то расстояние между ними постепенно увеличивается.

Скорость удаления – это расстояние, которое проходят тела за 1 ч при движении в противоположных направлениях. V удал. = 1V + 2V

Пример 1. Два лыжника одновременно вышли из пункта А в противоположных направлениях. Первый лыжник шёл со скоростью 12 км/ч, а второй – 14 км/ч. На каком расстоянии друг от друга они будут через 3 ч?

1)12 • 3 = 36 (км) – расстояние, которое прошёл первый лыжник за 3 ч

2)14 • 3 = 42 (км) – расстояние, которое прошёл второй лыжник за 3 ч

1)12 + 14 = 26 (км/ч) – скорость удаления

Ответ: через 3 ч они будут друг от друга на расстоянии 78 км.

Пример 2. Из города в противоположных направлениях выехали две машины. Скорость первой – 80 км/ч, скорость второй – 60 км/ч. Через сколько часов расстояние между машинами будет 280 км?

1) 80 + 60 = 140 (км/ч) – скорость удаления

2) 280 : 140 = 2 (ч)

Ответ: через 2 часа расстояние между машинами будет 280 км

Пример 3. Из города одновременно в противоположных направлениях выехали две машины. Скорость первой – 80 км/ч. С какой скоростью ехала вторая машина, если через 2 часа расстояние между ними было 340 км?

1) 340 : 2 = 170 (км/ч) – скорость удаления машин

2) 170 – 80 = 90 (км/ч)

Ответ: скорость второй машины 90 км/ч.

Задачи на движение в одном направлении

Пример 1. Автомобиль за 2 ч проехал 192 км. Следующие 3 ч он двигался со скоростью на 6 км/ч меньше. Сколько всего километров проехал автомобиль?

1)192 : 2 = 96 (км/ч) – первая скорость

2)96 – 6 = 90 (км/ч) – вторая скорость

3)90 • 3 = 270 (км) – второе расстояние

4)192 + 270 = 462 (км)

Пример 2. Из двух пунктов, расстояние между которыми 24 км, одновременно вышел спортсмен и выехал велосипедист. Скорость спортсмена 6 км/ч., а скорость велосипедиста 18 км/ч..

1).Через сколько часов велосипедист догонит спортсмена?

2).На каком расстоянии от пункта В велосипедист догонит спортсмена?

3). На сколько километров путь велосипедиста больше пути спортсмена?

V приближ. = 2V -1V , где 2V ֺ > 1V

1). 18 – 6 = 12 (км /ч.) – скорость приближения велосипедиста и спортсмена

2). 24 : 12 = 2 (ч.) – время, через которое велосипедист догонит спортсмена.

3). 6 ●2 = 12 (км) – расстоянии, на котором велосипедист догонит спортсмена.

Ответ: через 2 часа; 12 км.

Пример 3. За какое время мотоцикл догонит грузовой автомобиль, если расстояние между ними 45 км, а скорость мотоцикла больше скорости грузовика на 15 км/ч?

Источник



Задачи на встречное движение. Задачи по математике для 4 класса.

Из поселка и города навстречу друг другу, одновременно выехали два автобуса. Один автобус до встречи проехал 100 км со скоростью 25 км/час. Сколько километров до встречи проехал второй автобус, если его скорость 50 км/час.

    Решение:
  • 1) 100 : 25 = 4 (часа ехал один автобус)
  • 2) 50 * 4 = 200
  • Выражение: 50 * (100 : 25) = 200
  • Ответ: второй автобус проехал до встречи 200 км.

Задача 2.

Расстояние между двумя пристанями 90 км. От каждой из них одновременно навстречу друг другу вышли два теплохода. Сколько часов им понадобится чтобы встретиться, если скорость первого 20 км/час, а второго 25 км/час?

    Решение:
  • 1) 25 + 20 = 45 (сумма скоростей теплоходов)
  • 2) 90 : 45 = 2
  • Выражение: 90 : (20 + 25) = 2
  • Ответ: теплоходы встретятся через 2 часа.
Читайте также:  Воздушная подушка для поездов

Задача 3.

От двух станций, расстояние между которыми 564 км., одновременно навстречу друг другу вышли два поезда. Скорость одного из них 63 км/час. Какова скорость второго, если поезда встретились через 4 часа?

    Решение:
  • 1) 63 * 4 = 252 (прошел 1 поезд)
  • 2) 564 — 252 =312 (прошел 2 поезд)
  • 3) 312 : 4 = 78
  • Выражение: (63 * 4 — 252) : 4 = 78
  • Ответ: скорость второго поезда 78 км/час.

Задача 4.

Через сколько секунд встретятся две ласточки, летящие на встречу друг другу, если скорость каждой из них 23 метра в секунду, а расстояние между ними 920 м.

    Решение:
  • 1) 23 * 2 = 46 (сумма скоростей ласточек)
  • 2) 920 : 46 = 20
  • Выражение: 920 : (23 * 2) = 20
  • Ответ: ласточки встретятся через 20 секунд.

Задача 5

С двух поселков, навстречу друг другу выехали одновременно велосипедист и мотоциклист. Скорость мотоциклиста 54 км/час, велосипедиста 16 км/час. Сколько километров проехал мотоциклист до встречи, если велосипедист проехал 48 км?

    Решение:
  • 1) 48 : 16 = 3 (часа потратил велосипедист)
  • 2) 54 * 3 = 162
  • Выражение: 54 * (48 : 16) = 162
  • Ответ: мотоциклист проехал 162 км.

Задача 6

Две лодки, расстояние между которыми 90 км, начали движение на встречу друг другу. Скорость одной из лодок 10 км /час, другой 8 км/час. Сколько часов понадобится лодкам, чтобы встретится?

    Решение:
  • 1) 10 + 8 = 18 (скорость двух лодок вместе)
  • 2) 90 : 18 = 5
  • Выражение: 90 : (10 + 8) = 5
  • Ответ: лодки встретятся через 5 часов.

Задача 7

По дорожке, длинна которой 200 метров, навстречу друг другу побежали два мальчика. Один из них бежал со скоростью 5 м/сек. Какова скорость второго мальчика, если встретились они через 20 сек?

    Решение:
  • 1) 20 * 5 = 100 (метров пробежал первый мальчик)
  • 2) 200 — 100 = 100 (метров пробежал второй мальчик)
  • 3) 100 : 20 = 5
  • Выражение: (200 — 5 * 20) : 20 = 5
  • Ответ: скорость второго мальчика 5 км/сек.

Задача 8

Два поезда выехали навстречу друг другу. Скорость одного из них 35 км/час, другого 29 км/час. Какое расстояние между поездами было сначала, если встретились они через 5 часов?

    Решение:
  • 1) 35 + 29 = 64 (скорсть двух поездов вместе)
  • 2) 64 * 5 = 320
  • Выражение: (35 + 29) * 5 = 320
  • Ответ: расстояние между поездами было 320 км.

Задача 9

Из двух поселков навстречу друг другу выехали два всадника. Скорость одного из них 13 км/час, встретились они через 4 часа. С какой скоростью двигался второй всадник, если расстояние между поселками 100 км.

Источник

Задачи на движение для 4 класса — формулы и примеры решений

Задачи на движении в одном направлении относятся к одному из трех основных видов задач на движение.
Если два объекта выехали из одного пункта одновременно, то, поскольку они имеют разные скорости, объекты удаляются друг от друга. Чтобы найти скорость удаления, надо из большей скорости вычесть меньшую:

Если из одного пункта выехал один объект, а спустя некоторое время в том же направлении вслед за ним выехал другой объект, то они могут как сближаться, так и удаляться друг от друга.
Если скорость объекта, движущегося впереди, меньше движущегося вслед за ним объекта, то второй догоняет первого и они сближаются.
Чтобы найти скорость сближения, надо из большей скорости вычесть меньшую:

Если скорость объекта, который идет впереди, больше скорости объекта, который движется следом, то второй не сможет догнать первого и они удаляются друг от друга.
Скорость удаления находим аналогично — из большей скорости вычитаем меньшую:

Задачи на скорость сближения

Из города выехал автомобиль со скоростью 40 км/ч. Через 4 часа вслед за ним выехал второй автомобиль со скоростью 60 км/ч. Через сколько часов второй автомобиль догонит первый?

Решение :

Так как на момент выезда второго автомобиля из города первый уже был в пути 4 часа, то за это время он успел удалится от города на:

Второй автомобиль движется быстрее первого, значит каждый час расстояние между автомобилями будет сокращаться на разность их скоростей:

60 — 40 = 20 (км/ч) – это скорость сближения автомобилей

Разделив расстояние между автомобилями на скорость их сближения, можно узнать, через сколько часов они встретятся:

Решение задачи по действиям можно записать так:

1) 40 · 4 = 160 (км) – расстояние между автомобилями

2) 60 — 40 = 20 (км/ч) – скорость сближения автомобилей

Ответ: Второй автомобиль догонит первый через 8 часов.

Из двух посёлков между которыми 5 км, одновременно в одном направлении вышли два пешехода. Скорость пешехода, идущего впереди, 4 км/ч, а скорость пешехода, идущего позади 5 км/ч. Через сколько часов после выхода второй пешеход догонит первого?

Так как второй пешеход движется быстрее первого, то каждый час расстояние между ними будет сокращаться. Значит можно определить скорость сближения пешеходов:

Оба пешехода вышли одновременно, значит расстояние между ними равно расстоянию между посёлками (5 км). Разделив расстояние между пешеходами на скорость их сближения, узнаем через сколько второй пешеход догонит первого:

Решение задачи по действиям можно записать так:

1) 5 — 4 = 1 (км/ч) – это скорость сближения пешеходов

Ответ: Через 5 часов второй пешеход догонит первого.

Из одного села в одном направлении одновременно выехали два велосипедиста. Скорость одного из них — 15 км/ч, скорость другого — 12 км/ч. Какое расстояние будет через ними через 4 часа?

Читайте также:  Расписание поездов емва печора

Решение:

1) 15-12=3 (км/ч) скорость удаления велосипедистов

2) 3∙4=12 (км) такое расстояние будет между велосипедистами через 4 часа.

Ответ: Через 4 часа расстояние между велосипедистами составит 12 км.

Задача 4

Из села на станцию одновременно вышел пешеход и выехал велосипедист. Через 2 часа велосипедист опережал пешехода на 12 км. Найти скорость пешехода, если скорость велосипедиста 10 км/ч.

Решение:

1) 12:2=6 (км/ч) скорость удаления велосипедиста и пешехода

2) 10-6=4 (км/ч) скорость пешехода.

Ответ: Скорость пешехода составляет 4 км/ч.

Задачи на скорость удаления

  1. Чему равна скорость удаления между автомобилями?
  2. Какое расстояние будет между автомобилями через 3 часа?
  3. Через сколько часов расстояние между ними будет 200 км?

Решение:

Сначала узнаем скорость удаления автомобилей друг от друга, для этого вычтем из большей скорости меньшую:

Каждый час автомобили отдаляются друг от друга на 40 км. Теперь можно узнать сколько километров будет между ними через 3 часа, для этого скорость удаления умножим на 3:

Чтобы узнать через сколько часов расстояние между автомобилями станет 200 км, надо расстояние разделить на скорость удаления:

  1. Скорость удаления между автомобилями равна 40 км/ч.
  2. Через 3 часа между автомобилями будет 120 км.
  3. Через 5 часов между автомобилями будет расстояние в 200 км.

Движение навстречу друг другу

Если два объекта движутся навстречу друг другу, то они сближаются. Чтобы найти скорость сближения двух объектов, движущихся навстречу друг другу, надо сложить их скорости:

Скорость сближения больше, чем скорость каждого из них.

Из поселка и города навстречу друг другу, одновременно выехали два автобуса. Один автобус до встречи проехал 100 км со скоростью 25 км/час. Сколько километров до встречи проехал второй автобус, если его скорость 50 км/час.

1) 100 : 25 = 4 (часа ехал один автобус)

2) 50 * 4 = 200

Решение в виде выражения: 50 * (100 : 25) = 200

Ответ: второй автобус проехал до встречи 200 км.

1) 25 + 20 = 45 (сумма скоростей теплоходов)

Решение в виде выражения:90 : (20 + 25) = 2

Ответ: Теплоходы встретятся через 2 часа.

От двух станций, расстояние между которыми 564 км., одновременно навстречу друг другу вышли два поезда. Скорость одного из них 63 км/час. Какова скорость второго, если поезда встретились через 4 часа?

1) 63 * 4 = 252 (прошел 1 поезд)

2) 564 — 252 =312 (прошел 2 поезд)

Решение в виде выражения (63 * 4 — 252) : 4 = 78

Ответ: Скорость второго поезда 78 км/час.

Задача 4

Два велосипедиста выехали навстречу друг другу. Скорость одного из низ 12 км/ч, а другого — 10 км/ч. Через 3 часа они встретились. Какое расстояние было между ними в начале пути?

Решение:

1) 12+10=22 (км/ч) скорость сближения велосипедистов

2) 22∙3=66 (км) было между велосипедистами в начале пути.

Ответ: Расстояние между велосипедистами в начале пути было 66 км.

Два поезда идут навстречу друг другу. Скорость одного из них 50 км/ч, скорость другого — 60 км/ч. Сейчас между ними 440 км. Через сколько часов они встретятся?

Решение:

1) 60+50=110 (км/ч) скорость сближения поездов

2) 440:110=4 (ч) время, через которое поезда встретятся.

Ответ: Поезда встретятся через 4 часа.

Движение в противоположных направлениях

Если два объекта движутся в противоположных направлениях, то они удаляются. Чтобы найти скорость удаления, надо сложить скорости этих объектов:

Скорость удаления больше скорости любого из них.

Из поселка вышли одновременно в противоположных направлениях два пешехода. Средняя скорость одного пешехода – 5 км/ч, другого – 4 км/ч. Через сколько часов расстояние между ними будет 27 км ?

Чтобы найти время движения пешеходов, нужно знать расстояние и скорость пешеходов. Мы знаем, что за каждый час один пешеход удаляется от поселка на 5 км, а другой пешеход удаляется от поселка на 4 км. Можем найти их скорость удаления.

Мы знаем скорость удаления и знаем все расстояние – 27 км. Можем найти время, через которое пешеходы удалятся друг от друга на 27 км, для этого нужно расстояние разделить на скорость.

Ответ: Через три часа расстояние между переходами будет 27 км.

Из поселка вышли одновременно в противоположных направлениях два пешехода. Через 3 часа расстояние между ними было 27 км. Первый пешеход шел со скоростью 5 км/ч. С какой скоростью шел второй пешеход ?

Чтобы узнать скорость второго пешехода, надо знать расстояние, которое он прошел, и его время в пути. Чтобы узнать, какое расстояние прошел второй пешеход, надо знать, какое расстояние прошел первый пешеход и общее расстояние. Общее расстояние мы знаем. Чтобы найти расстояние, которое прошел первый пешеход, надо знать его скорость и его время в пути. Средняя скорость движения первого пешехода – 5 км/ч, его время в пути – 3 часа. Если среднюю скорость умножить на время в пути, получим расстояние, которое прошел пешеход:

Мы знаем общее расстояние и знаем расстояние, которое прошел первый пешеход. Можем теперь узнать, какое расстояние прошел второй пешеход.

Теперь мы знаем расстояние, которое прошел второй пешеход, и время, проведенное им в пути. Можем найти его скорость.

Ответ: Скорость второго пешехода – 4 км/ч.

Товарный и пассажирский поезда движутся в противоположных направлениях. Скорость товарного 45 км/ч, скорость пассажирского — 70 км/ч. Сейчас между ними 20 км. Какое расстояние будет между ними через 2 часа ?

Читайте также:  Когда выходит скорый поезд

1) 70+45=115 (км/ч) скорость удаления поездов

2) 115∙2=230 (км) пройдут поезда вместе за 2 часа

3) 230+20=250 (км) такое расстояние между поездами будет через 2 часа.

Ответ: Через 2 часа расстояние между поездами составит 250 км.

Из одного пункта одновременно в противоположных направлениях выехали два мотоциклиста. Скорость одного из них — 60 км/ч, скорость другого — 40 км/ч. Через какое время расстояние между ними станет равным 300 км?

1) 60+40=100 (км/ч) скорость удаления мотоциклистов

2) 300:100=3 (ч) через такое время расстояние между ними будет 300 км.

Ответ: Расстояние между мотоциклистами станет 300 км через 3 часа.

Источник

Задачи на встречное движение

В задачах на движение рассматриваются три взаимосвязанные величины:

S — расстояние (пройденный путь),

t — время движения и

V — скорость – расстояние, пройденное за единицу времени.

Расстояние – это произведение скорости на время движения

Скорость — это частное от деления расстояния на время движения

Время – это частное от деления расстояния на скорость движения

Задачи на встречное движение

Если два тела одновременно движутся навстречу друг другу, то расстояние между ними постоянно изменяется на одно и то же число, равное сумме расстояний, которые проходят тела за единицу времени.

Скорость сближения – это сумма скоростей, движущихся навстречу друг другу тел. V сближ. = 1V + 2V

Пример 1. Два велосипедиста одновременно выехали навстречу друг другу из двух посёлков и встретились через 3 часа. Первый велосипедист ехал со скоростью 12 км/ч, а второй – 14 км/ч. На каком расстоянии находятся посёлки?

V сближ. = 1V + 2V

1) 12 • 3 = 36 (км) – проехал первый велосипедист до встречи

2) 14 • 3 = 42 (км) – проехал второй велосипедист до встречи

3) 36 + 42 = 78 (км)

1) 12 + 14 = 26 (км/ч) – скорость сближения

Ответ : расстояние между посёлками 78 км.

Пример 2. Из двух городов навстречу друг другу выехали две машины. Скорость первой – 80 км/ч, скорость второй – 60 км/ч. Через, сколько часов машины встретятся, если расстояние между городами 280 км?

V сближ. = 1V + 2V

1) 80 + 60 = 140 (км/ч) – скорость сближения

2) 280 : 140 = 2 (ч)

Ответ : машины встретятся через 2 часа.

Пример 3. Из двух городов, расстояние между которыми 340 км, выехали одновременно навстречу друг другу две машины. Скорость первой – 80 км/ч. С какой скоростью ехала вторая машина, если встретились они через 2 часа?

2V = V сближ. — 1V

1) 340 : 2 = 170 (км/ч) – скорость сближения

2) 170 – 80 = 90 (км/ч)

Ответ : 90 км/ч. скорость второй машины

Задачи на движение в противоположных направлениях

Если два тела одновременно движутся в противоположных направлениях, то расстояние между ними постепенно увеличивается.

Скорость удаления – это расстояние, которое проходят тела за 1 ч при движении в противоположных направлениях. V удал. = 1V + 2V

Пример 1. Два лыжника одновременно вышли из пункта А в противоположных направлениях. Первый лыжник шёл со скоростью 12 км/ч, а второй – 14 км/ч. На каком расстоянии друг от друга они будут через 3 ч?

1)12 • 3 = 36 (км) – расстояние, которое прошёл первый лыжник за 3 ч

2)14 • 3 = 42 (км) – расстояние, которое прошёл второй лыжник за 3 ч

1)12 + 14 = 26 (км/ч) – скорость удаления

Ответ: через 3 ч они будут друг от друга на расстоянии 78 км.

Пример 2. Из города в противоположных направлениях выехали две машины. Скорость первой – 80 км/ч, скорость второй – 60 км/ч. Через сколько часов расстояние между машинами будет 280 км?

1) 80 + 60 = 140 (км/ч) – скорость удаления

2) 280 : 140 = 2 (ч)

Ответ: через 2 часа расстояние между машинами будет 280 км

Пример 3. Из города одновременно в противоположных направлениях выехали две машины. Скорость первой – 80 км/ч. С какой скоростью ехала вторая машина, если через 2 часа расстояние между ними было 340 км?

1) 340 : 2 = 170 (км/ч) – скорость удаления машин

2) 170 – 80 = 90 (км/ч)

Ответ: скорость второй машины 90 км/ч.

Задачи на движение в одном направлении

Пример 1. Автомобиль за 2 ч проехал 192 км. Следующие 3 ч он двигался со скоростью на 6 км/ч меньше. Сколько всего километров проехал автомобиль?

1)192 : 2 = 96 (км/ч) – первая скорость

2)96 – 6 = 90 (км/ч) – вторая скорость

3)90 • 3 = 270 (км) – второе расстояние

4)192 + 270 = 462 (км)

Пример 2. Из двух пунктов, расстояние между которыми 24 км, одновременно вышел спортсмен и выехал велосипедист. Скорость спортсмена 6 км/ч., а скорость велосипедиста 18 км/ч..

1).Через сколько часов велосипедист догонит спортсмена?

2).На каком расстоянии от пункта В велосипедист догонит спортсмена?

3). На сколько километров путь велосипедиста больше пути спортсмена?

V приближ. = 2V -1V , где 2V ֺ > 1V

1). 18 – 6 = 12 (км /ч.) – скорость приближения велосипедиста и спортсмена

2). 24 : 12 = 2 (ч.) – время, через которое велосипедист догонит спортсмена.

3). 6 ●2 = 12 (км) – расстоянии, на котором велосипедист догонит спортсмена.

Ответ: через 2 часа; 12 км.

Пример 3. За какое время мотоцикл догонит грузовой автомобиль, если расстояние между ними 45 км, а скорость мотоцикла больше скорости грузовика на 15 км/ч?

Источник