Если бы поезд двигался со скоростью света



Как понять теорию относительности

О том, как в знаменитой теории Альберта Эйнштейна взаимосвязаны скорость света, масса, время и пространство.

Как известно, вся материальная Вселенная имеет три измерения: вверх-вниз, вправо-влево, вперёд-назад. Четвёртое измерение — это время. Вместе они и составляют пространственно-временной континуум. Но вся загвоздка в том, что наши представления о пространстве и времени напрямую зависят от скорости, с которой мы движемся.

Именно взаимоотношения между временем, пространством и движущимся объектом описывает специальная теория относительности (СТО), разработанная Альбертом Эйнштейном в 1905 году. Позже на её основе великий физик создал также общую теорию относительности (ОТО), которая, помимо времени и пространства, учитывает и другие факторы, например гравитацию. О ней мы говорить не будем — для этого потребовался бы отдельный научный труд. Итак, приступим к изучению специальной теории относительности!

Главные принципы теории относительности

Первое, что нужно понять для освоения теории относительности: движение относительно.

Это значит, что наличие или отсутствие движения всегда определяется относительно других объектов. Движение и его скорость зависят от наблюдателя (того, кто смотрит на объект) и системы отсчёта (того, откуда он смотрит).

Представьте, что пассажир едет в поезде и читает книгу. Для него книга неподвижна, как неподвижны и кресла в поезде, и другие пассажиры (если они сидят на своих местах, а не пробираются к вагону-ресторану, конечно). Скорость всех неподвижных объектов в поезде, с точки зрения нашего пассажира-читателя, будет равна нулю.

В это время на платформе стоит другой человек, мимо которого со свистом пролетает поезд. Для него и пассажир с книгой, и кресла движутся со скоростью поезда — допустим, 200 км/ч. А вот пассажиры на пути в вагон-ресторан, расположенный в голове состава, будут двигаться ещё быстрее: их скорость сложится со скоростью поезда.

Так происходит при любом сложении скоростей, но есть одно исключение: скорость света. Свет от прожектора на носу нашего поезда будет двигаться всегда с одинаковой скоростью — 300 000 км/с.

Здесь мы вплотную подошли к базовым принципам, на которых строится теория относительности:

  • Принцип относительности: для тех тел, которые относительно друг друга движутся на постоянной скорости или неподвижны (как пассажир и его книга), физические процессы протекают одинаково.
  • Принцип постоянства скорости света: скорость света постоянна для всех наблюдателей, независимо от их скорости по отношению к источнику света. То есть свет от фонаря на носу поезда или свет от прожектора на космическом корабле имеют одинаковую скорость.

Свет движется так быстро, что его распространение кажется нам мгновенным. Но на космических расстояниях всё выглядит совсем по-другому. К примеру, расстояние от Солнца до Земли, составляющее 150 миллионов километров, свет проходит примерно за 8 минут. А значит, что если Солнце когда-нибудь потухнет, то мы увидим это только через 8 минут.

Следствия теории относительности

Что же следует из описанных выше принципов и как они связаны со временем и пространством? Теория относительности имеет три основных следствия: пространство расширяется, время сжимается, масса увеличивается. Разберёмся с каждым по порядку.

Время сжимается

Эйнштейн первым понял, что время не абсолютно и зависит от системы отсчёта, в которой мы его наблюдаем. Земля и далёкая галактика на другом конце Вселенной находятся в разных точках не только пространства, но и времени.

Относительно движущихся объектов время идёт медленнее. Этот факт был проверен Around-the-World Atomic Clocks: Predicted Relativistic Time Gains с использованием двух одинаковых атомных часов: один прибор оставили на Земле, а другой отправили на сверхзвуковом самолёте вокруг планеты. При посадке было отмечено, что часы, которые летали, на несколько тысячных секунды отстают от часов в состоянии покоя.

Чем ближе скорость объекта становится к скорости света, тем медленнее для него течёт время. В теории, если астронавт отправится в путешествие на космическом корабле со скоростью, близкой к скорости света, он попадёт в будущее. Для него пройдёт несколько недель, а на Земле — несколько десятилетий. Это и есть относительность времени.

Пространство сжимается

Ещё одно удивительное следствие относительности: когда мы видим объект в движении, то можем наблюдать, что он становится всё более коротким с увеличением его скорости. С точки зрения наблюдателя, при приближении к скорости света объект становится всё короче и короче по направлению движения, а перпендикулярно ему остаётся в прежних размерах.

Допустим, мы сажаем астронавта в космический корабль, который может двигаться со скоростью света, а сами отправляемся в уютную обсерваторию наблюдать за его путешествием. По мере приближения к скорости света с кораблём начнёт происходить что-то странное. Мы заметим, что он становится всё короче. Но изменения происходят только в отношении направления движения, ширина корабля остаётся постоянной. Достигнув скорости света, он станет практически неразличим в длину.

Наверное, нашему астронавту сейчас не очень весело? Не беспокойтесь за него: для астронавта никаких изменений не происходит. Он всё так же радостно несётся навстречу космическим просторам и ничего не замечает. Пространство сжимается только относительно наблюдателя.

Масса увеличивается

Ещё одним поразительным следствием относительности является то, что по мере увеличения скорости объекта его масса тоже увеличивается.

Масса и энергия неразрывно связаны. Именно это выразил Эйнштейн в знаменитом уравнении E = mc². Эта формула показывает, что энергия тела пропорциональна его массе. При передаче телу энергии (то есть его ускорении) увеличивается и масса. Выходит, что часть энергии идёт на увеличение скорости, а другая часть увеличивает массу.

Вспомним о нашем астронавте, который приближается к скорости света в своём корабле. Наблюдая с Земли, мы видим, что по мере увеличения скорости корабля становится всё труднее ускорить его, то есть всё больше и больше энергии требуется, чтобы его подтолкнуть. Наступает момент, когда корабль достигнет такой массы, что никакая энергия во Вселенной больше не сможет его двигать. Вот поэтому на практике путешествия во времени пока невозможны.

Если коротко

Итак, при приближении к скорости света время расширяется, пространство сжимается. Но происходит всё это только в глазах наблюдателя, который видит движение объекта относительно себя. Для астронавта в корабле ничего не меняется (кроме увеличения массы). Но при этом обе точки зрения верны. Поэтому теория относительности и носит такое название.

Все ещё не очень ясно? Неудивительно, ведь самому Эйнштейну потребовалось 10 лет, чтобы сформировать основные постулаты теории относительности. Есть книга, которая поможет вам ещё раз уложить эти принципы в голове и объяснит всё буквально на пальцах, с яркими картинками и доступными графиками. «Теория относительности» от редакции «Аванта» издательства АСТ адресована школьникам средних классов, но будет интересна любому взрослому, желающему проникнуть в тайны нашей Вселенной. Ведь то, что кажется чудесами, на самом деле реальность!

Источник

если поезд двигается со скоростью света и я включаю фонарик что произойдёт? вырвяться ли фотоны впереди поезда?

скажем по другому если один фотон выпускает другой фотон, то фотон 1 относительно фотона 2 движутся со скоростью =с и фотон 1 относительно планеты земля движется со скоростью тоже = с это белиберда получается если фотон вообще сможет выйти из другого фотона (тот-же фонарик) то он будет мчаться со скоростью =с + v

С ЧЬЕЙ точки зрения?
Того кто в поезде? — ещё как вырвУтся

С точки зрения того, ОТНОСИТЕЛЬНО кого у поезда скорость света ? -нет, он их почти догонит.. .

ВСЕ поколения непроходимых тупиц, постоянно задающих этот вопрос, забывают самое главное: НЕ БЫВАЕТ ВООБЩЕ СКОРОСТИ, любая скорость относительно чего-то

И если поезд Москва-Петушки ОТНОСИТЕЛЬНО ЗЕМЛИ тащится как удав по стекловате, со скорость. 40 км/час, то вот ОТНОСИТЕЛЬНО КВАЗАРА ULAS J1120 тот же поезд летит со скоростью всего на 3 процента меньше скорости света.

И что? Вырывается вперёд луч его фар, или нет?

В этом поезде нельзя включить фонарик. Для этого потребуется бесконечное время. Не говоря уже о том, что сам поезд должен состоять из света — частицы с ненулевой массой покоя не могут двигаться со скоростью света.

Если уж поезд движется со скоростью света, то он пролетит любое наперед загаданное расстояние за нулевое время. (Как это происходит, другой вопрос) . Соответственно, вопрос о том, с какой скоростью будет двигаться луч фонарика в его системе отсчета, теряет смысл — это неопределенность вида 0/0.
А как будет происходить движение такого поезда — могу пояснить. Пока поезд разгоняется до световой скорости, Вселенная вдоль направления движения поезда будет неограниченно сжиматься и приобретет нулевой размер, когда он достигнет скорости света. Как только поезд начнет тормозить, Вселенная начнет разжиматься обратно, но только наш поезд окажется не на том конце, откуда начинал движение, а на противоположном. Если уж вы хотели доходчивое объяснение на бытовом уровне.

Читайте также:  Обозерская малошуйка расписание пригородных поездов

В теории относительности другой закон сложения скоростей, не арифметическое сложение, как в классической механике. На основе преобразований Лоренца. Есть много популярных изложений. Например,

Источник

The Noobs` Science: Теория относительности простым языком

Договоримся обозначать теорию относительности ТО, специальную — СТО, общую — ОТО.

Если мы начнём сравнивать теорию относительности с квантовой механикой, то заметим, что создатели квантовой механики — десятки учёных, в то время как единственной центральной фигурой всей теории относительности является Альберт Эйнштейн.

Понимание этой теории поможет в восприятии многих физических явлений. Она способна объяснить, почему траектория света может искривляться, вопреки принципу Ферма о прямолинейном распространении света, или же почему не стоит опасаться чёрных дыр.

В то же время теория относительности учит критическому мышлению. Допустим, если появится новость о создании космического корабля со сверхсветовой скоростью, то распознать в ней фейк не составит труда, ведь никакая скорость не может быть больше скорости света.

В конце концов, теория относительности объяснила множество парадоксальных явлений, которые раньше не подлежали никакому объяснению со стороны учёных.

Любая физика начинается с классической механики, то есть описания макроскопического мира, его объектов и движения этих объектов. Когда объект достигает очень больших скоростей, он перестаёт подчиняться классической механике и начинает подчиняться релятивистской.

Что такое «большие скорости»? Всё сравнивается со скоростью света: если объект движется со скоростью ненамного меньшей скорости света, то он перестаёт подчиняться законам классической механики.

Общая и специальная теория относительности

Существуют общая и специальная теории относительности. Первой появилась специальная — она не учитывает гравитацию, которую, к сожалению, невозможно игнорировать. Общая теория относительности учитывает гравитацию и из неё вытекают интересные следствия, такие как красные гравитационные смещения, гравитационные волны или чёрные дыры.

Есть одна принципиально важная тема для понимания ТО — принцип относительности Галилея:

Физические процессы в инерциальных системах отсчёта (договоримся обозначать их ИСО, системы отсчёта — СО) протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.

Если бросить камень и перо вниз в Алматы и в Чикаго одновременно, из одной и той же высоты, пренебрегая сопротивлением воздуха (провести эксперимент в вакууме), то и перо, и камень приземлятся одновременно, из чего вытекает вывод — все покоящиеся системы отсчёта эквивалентны друг другу.

Следующий мысленный эксперимент — вы находитесь в вагоне поезда, который двигается с постоянной скоростью, вагон звукоизолированный, герметичный, в нем нет окон, поезд не трясётся по рельсам, а внутри нет часов. Вы решили заснуть.

Вопрос: как после пробуждения определить, прибыли ли вы или нет?

Ответ: никак. Вывод — система, двигающаяся с постоянной скоростью, эквивалентна покоящейся системе, и можно спокойно переходить из одной в другую, законы физики при этом не изменятся.

Нет смысла утверждать, покоится ли объект, либо двигается, если не уточнить относительно чего он покоится или двигается. Например, лежа на диване, мы покоимся относительно земли, но двигаемся относительно Солнца, так как сама Земля постоянно вращается вокруг Солнца.

Также стоит отметить, что из одной ИСО можно перейти в другую банальным использованием простейших формул. Например, если человек в поезде, движущимся со скоростью 60 км/ч, перемещается со скоростью 5 км/ч в направлении движения поезда, то относительно неподвижного наблюдателя у вокзала, человек в поезде перемещается со скоростью 65 км/ч. Очень просто.

Однако, существовало одно значительное противоречие — свет. Он не подчиняется этим правилам и в любой ИСО двигается с одинаковой скоростью (примерно 300 000 км/сек). То есть, что для наблюдателя у вокзала, что для пассажира поезда, теперь уже с фонарём в руке, свет бы удалялся с одинаковой скоростью, несмотря на то что может казаться, что относительно неподвижного наблюдателя у вокзала, свет бы удалялся с большей скоростью — не 300 000 км/c, а 300 000 + скорость поезда в секунду.

Эйнштейн решает эту проблему в 1905 году и корректирует классические постулаты Галилея:

  1. Все физические явления — не только механические (только о механических говорилось у Галилея), — протекают одинаково во всех ИСО, то есть добавляются слабое, сильное и электромагнитное взаимодействия.
  2. Существование предельной скорости распространения взаимодействия: любые взаимодействия между телами распространяются в пустоте с универсальной конечной скоростью, не зависящей от движения тел и равной скорости света в вакууме. Иными словами, существует самая большая возможная скорость — скорость света, выше которой не может быть ни одна скорость.

Какие явления описывает специальная теория относительности?

Релятивистский эффект замедления времени

Представьте, две одинаковые ракеты летят с одинаковой скоростью, одна находится над второй. В какой-то момент времени одна ракета посылает световой сигнал второй. Если вы переместитесь во вторую ракету, относительно вас световой сигнал идёт перпендикулярно, однако относительно неподвижного свидетеля, который наблюдает за ситуацией «в целом», свет пройдёт более длинный путь, как бы по диагонали.

Почему длиннее? Вспоминаем геометрию — гипотенуза всегда длиннее катета. Однако, скорость света одинакова в обоих СО, время вроде бы тоже должно быть одинаково, но S2>S1. Противоречие (на рисунке с — скорость света).

Значит, в СО движущейся ракеты время замедлилось, потому что в этой СО свет прошёл меньшее расстояние. И это действительно так. При скоростях, близких к скоростям света, время замедляется.

Релятивистский эффект сокращения длины

Допустим, ракета двигается со скоростью, составляющей 83 процента от скорости света (примерно 243 000 км/сек), тогда относительно неподвижного наблюдателя, её длина уменьшится в два раза в направлении движения.

То есть если её скорость направлена вдоль оси Х, то длина также сократится вдоль оси Х, оставаясь неизменной вдоль осей Y и Z (другими словами, сократится только длина, или ширина, или высота, в зависимости от ориентации ракеты, но не все параметры сразу).

Кстати, время для этой ракеты замедлится в два раза. Если же мы перейдём в СО ракеты, то длина останется прежней, однако все окружающие её объекты сократятся в два раза.

Звучит всё невероятно. Теория подтвердилась экспериментом только в 1952 году. Есть такие частицы — пионы, время жизни которых составляет 2,6 *10−8 сек, и они двигаются со скоростью света. Если посчитать, какое расстояние пройдёт пион за всю жизнь, двигаясь со скоростью света, то получится, что он пройдёт только 7,5 м.

Однако, установка, которая «плевала» этими пионами, и приёмник находились в 100 метрах друг от друга. То есть, пионы бы не долетели до приёмника без законов СТО. Но если мы подключаем ТО, то время жизни частицы становится в 100 раз больше, то есть она способна пролететь не 7,5 м, а 750 м.

Что же происходит в СО частицы? В СО частицы она также пролетает 7,5 м., однако для неё 100 м. между ней и приёмником превращаются в 1м, согласно эффекту сокращения длины.

Когда статья Эйнштейна о специальной ТО была опубликована, особой огласки она не получила. Эйнштейн думал над тем, как включить гравитацию в свою теорию. На тот момент везде царили законы гравитации Ньютона. Благодаря им открыли Нептун.

Дело в том, что при наблюдении за Ураном выяснили, что при всех силах, которые на него действуют, у Урана должна быть совершенно другая скорость движения. Предположили существование ещё одной планеты за Ураном, которая бы объясняла данное значение скорости. В 1846 году появляется новый телескоп, обнаруживают Нептун, подтверждаются законы Ньютона.

Однако по Ньютону, если мы сдвинем Солнце, произойдёт моментальное изменение силы, с которой Солнце притягивается к другим объектам. Скорость изменения силы бесконечно большая, что противоречит СТО (так как существует максимальное значение скорости, равное скорости света, бесконечной скорости никак не может быть).

Эйнштейн заметил ещё одну вещь: если наблюдатель находится вблизи массивного тела, то чем ближе он к этому телу, тем медленнее течёт его время. Например, в любом доме на Земле время на первом этаже течет медленнее, чем на втором. Правда, разница оказывается очень маленькой:

3*10−16 сек = 0.0000000000000003 сек

Однозначно со временем что-то не так. Эйнштейн решил, что в этом ключ ко всей его теории. Однако, он оказался неправ.

Преподаватель Эйнштейна по математике Герман Минковский, обнаружив его работу, выдвинул свою точку зрения: нет смысла отдельно рассматривать пространство и время, физику необходимо рассматривать в четырёхмерном пространстве.

Читайте также:  Контейнерные поезда китай москва

Для нас странно, что длина объекта сокращается при больших скоростях, однако Минковский считал, что нет никакого сокращения длины в четырёхмерном пространстве, и что просто проекция четырехмерного объекта в трёхмерный начинает изменяться. Четвёртой осью в четырёхмерном пространстве считается время.

Чтобы понять, что такое проекция, вспомните свою тень. Ваше тело находится в трехмёрном пространстве, однако ваша тень — на плоскости, то есть в двумерном пространстве. Она и есть проекция вашего трёхмерного тела на двумерную плоскость.

Тень редко передаёт точные пропорции и размеры человека, соответственно, если события, которые происходят в четырёхмерном пространстве, проектировать на наш, трёхмерный, то появляются искажение, допустим, в виде сокращения длины при скоростях, близких к скоростям света.

Мы реально живём в четырёхмерном пространстве?

И да, и нет. Пространство-время искривлено находящимися в нём массой и энергией. Другие же объекты чувствуют искривление пространства-времени и следуют так, как им указывает пространство.

С 1908 по 1914 Эйнштейн предпринял ряд безуспешных попыток построить такую модель гравитации, которая согласовалась бы со СТО. Наконец, в 1915 году он опубликовал ОТО.

Эйнштейн высказал предположение революционного характера: гравитацияэто не обычная сила, а следствие того, что пространство-время не является плоским, как считалось раньше; оно искривлено распределёнными в нём массой и энергией. Такие тела, как Земля, вовсе не принуждаются двигаться по искривлённым орбитам гравитационной силой; они движутся по линиям, которые в искривлённом пространстве более всего соответствуют прямым в обычном пространстве и называются геодезическими.

Что такое геодезическая линия?

Геодезическая линия — это линия, соответствующая самому короткому пути между двумя точками. Очевидно, что в идеальном двумерном пространстве это просто прямой отрезок, соединяющий две точки. Однако, что будет, если мы начнём поверхность искривлять, добавляя массу, а вместе с ней и энергию? Прямые будут также прогибаться.

В пределах полученной искривлённой плоскости, искривлённая прямая будет уже называться геодезической, и, тем не менее на искривлённой плоскости она будет продолжать соответствовать самому короткому пути.

Допустим, вы совершаете трип по холмистой местности и хотите пройти как можно более короткий путь. У вас есть макет рельефа этой местности. Очень сложно прочертить самый короткий маршрут в этом случае. Но если «сплюснуть» данный рельеф в идеальную плоскость, предварительно отметив начальную и конечную точку, то можно потом просто соединить эти две точки уже в двумерной плоскости — получится прямая; опять искривить плоскость до «холмистой», и вот, пожалуйста — у вас начертанный самый короткий путь.

Например, поверхность Земли — искривлённое двумерное пространство, так как любую координату можно задать долготой и широтой. Поскольку самый короткий путь между двумя аэропортами — по геодезической, диспетчеры всегда задают пилотам именно такой маршрут.

Согласно ОТО, тела всегда перемещаются по прямым в четырёхмерном пространстве-времени, но мы видим, что в нашем трёхмерном пространстве они движутся по искривлённым траекториям. Понаблюдайте за самолётом над холмистой местностью. Сам он летит по прямой в трёхмерном пространстве, а его тень перемещается по кривой на двумерной поверхности Земли.

Источник

Общая теория относительности Эйнштейна: четыре шага, предпринятых гением

Революционный физик использовал свое воображение, а не сложную математику, чтобы придумать свое самое известное и элегантное уравнение. Общая теория относительности Эйнштейна известна тем, что предсказывает странные, но истинные явления, вроде замедления старения астронавтов в космосе по сравнению с людьми на Земле и изменения форм твердых объектов на высоких скоростях.

Но интересно то, что если вы возьмете копию оригинальной статьи Эйнштейна об относительности 1905 года, ее будет довольно просто разобрать. Текст прост и понятен, а уравнения в основном алгебраические — их сможет разобрать любой старшеклассник.

Все потому, что сложная математика никогда не была коньком Эйнштейна. Он любил думать образно, проводить эксперименты в своем воображении и осмыслять их до тех пор, пока физические идеи и принципы не станут видны кристально ясно.

Вот с чего начались мысленные эксперименты Эйнштейна, когда ему было всего 16 лет, и как они в конечном итоге привели его к самому революционному уравнению в современной физике.

1895 год: бег рядом с лучом света

К этому моменту жизни Эйнштейна его плохо скрываемое презрение к немецким корням, авторитарным методам обучения в Германии уже сыграло свою роль, и его выгнали из средней школы, поэтому он переехал в Цюрих в надежде на поступление в Швейцарский федеральный технологический институт (ETH).

Но сперва Эйнштейн решил провести год подготовки в школе в соседнем городе Аарау. В этом месте он вскоре обнаружил, что интересуется тем, каково это — бежать рядом с лучом света.

Эйнштейн уже узнал в физическом классе, что такое луч света: множество колеблющихся электрических и магнитных полей, движущихся на скорости 300 000 километров в секунду, измеренной скорости света. Если он бежал бы рядом с такой же скоростью, осознал Эйнштейн, он мог бы увидеть множество колеблющихся электрических и магнитных полей рядом с ним, словно застывшие в пространстве.

Но это было невозможно. Во-первых, стационарные поля нарушали бы уравнения Максвелла, математические законы, в которых было заложено все, что физики знали об электричестве, магнетизме и свете. Эти законы были (и остаются) довольно строгими: любые волны в этих полях должны двигаться со скоростью света и не могут стоять на месте, без исключений.

Хуже того, стационарные поля не вязались с принципом относительности, который был известен физикам со времен Галилея и Ньютона в 17 веке. По сути, принцип относительности говорит, что законы физики не могут зависеть от того, как быстро вы движетесь: вы можете измерить лишь скорость одного объекта относительно другого.

Но когда Эйнштейн применил этот принцип к своему мысленному эксперименту, возникло противоречие: относительность диктовала, что все, что он мог увидеть, двигаясь рядом с лучом света, включая стационарные поля, должно быть чем-то приземленным, что физики могут создать в лаборатории. Но такого никто никогда не наблюдал.

Эта проблема будет волновать Эйнштейна еще 10 лет, на протяжении всего его пути обучения и работы в ETH и движения к столице Швейцарии Берну, где он станет экзаменатором в швейцарском патентном бюро. Именно там он разрешит парадокс раз и навсегда.

1904 год: измерение света с движущегося поезда

Это было непросто. Эйнштейн пробовал любое решение, которое приходило ему в голову, но ничего не работало. Почти отчаявшись, он начал раздумывать, но простым, однако радикальным решением. Возможно, уравнения Максвелла работают для всего, подумал он, но скорость света всегда была постоянной.

Другими словами, когда вы видите пролетающий пучок света, не имеет значения, будет ли его источник двигаться к вам, от вас, в сторону или еще куда-нибудь, и не имеет значения, насколько быстро движется его источник. Скорость света, которую вы измерите, всегда будет 300 000 километров в секунду. Помимо всего прочего, это означало, что Эйнштейн никогда не увидит стационарных колеблющихся полей, поскольку никогда не сможет поймать луч света.

Это был единственный способ, который увидел Эйнштейн, чтобы примирить уравнения Максвелла с принципом относительности. На первый взгляд, впрочем, это решение имело собственный роковой недостаток. Позже он объяснил его другим мысленным экспериментом: представьте себе луч, который запускается вдоль железнодорожной насыпи, в то время как поезд проходит мимо в том же направлении со скоростью, скажем, 3000 километров в секунду.

Некто стоящий возле насыпи должен будет измерить скорость светового луча и получить стандартное число в 300 000 километров в секунду. Но кто-то на поезде будет видеть свет, движущийся со скоростью 297 000 километров в секунду. Если скорость света непостоянна, уравнение Максвелла внутри вагона должно выглядеть иначе, заключил Эйнштейн, и тогда принцип относительности будет нарушен.

Это кажущееся противоречие заставило Эйнштейна задуматься почти на год. Но затем, в одно прекрасное утро в мае 1905 года, он шел на работу со своим лучшим другом Мишелем Бессо, инженером, которого он знал со студенческих лет в Цюрихе. Двое мужчин говорили о дилемме Эйнштейна, как и всегда. И вдруг Эйнштейн увидел решение. Он работал над ним всю ночь, и когда следующим утром они встретились, Эйнштейн сказал Бессо: «Спасибо. Я полностью решил проблему».

Май 1905 года: молния бьет в движущийся поезд

Откровение Эйнштейна состояло в том, что наблюдатели в относительном движении воспринимают время по-разному: вполне возможно, что два события будут происходить одновременно с точки зрения одного наблюдателя, но в разное время с точки зрения другого. И оба наблюдателя будут правы.

Читайте также:  Где произошло крушение поезда сегодня

Позднее Эйнштейн проиллюстрировал свою точку зрения другим мысленным экспериментом. Представьте, что рядом с железной дорогой снова стоит наблюдатель и мимо него проносится поезд. В тот момент, когда центральная точка поезда проходит мимо наблюдателя, в каждый конец поезда бьет молния. Поскольку молнии бьют на одном расстоянии от наблюдателя, их свет попадает в его глаза одновременно. Справедливо будет сказать, что молнии бьют одновременно.

Между тем ровно в центре поезда сидит другой наблюдатель. С его точки зрения свет от двух ударов молний проходит одинаковое расстояние и скорость света будет одинаковой в любом направлении. Но поскольку поезд движется, свет, приходящий от задней молнии, должен пройти большее расстояние, поэтому попадает к наблюдателю несколькими мгновениями позже, чем свет из начала. Поскольку импульсы света приходят в разное время, можно заключить, что удары молнии не одновременны — один происходит быстрее.

Эйнштейн понял, что относительна как раз эта одновременность. И как только вы это признаете, странные эффекты, которые мы сейчас связываем с относительностью, разрешаются при помощи простой алгебры.

Эйнштейн лихорадочно записал свои мысли и отправил свою работу для публикации. Названием стало «Об электродинамике движущихся тел», и в нем отразилась попытка Эйнштейна увязать уравнения Максвелла с принципом относительности. Бессо была вынесена отдельная благодарность.

Сентябрь 1905 года: масса и энергия

Эта первая работа, впрочем, не стала последней. Эйнштейн был одержим относительностью до лета 1905 года, а в сентябре отправил вторую статью для публикации, уже вдогонку, задним числом.

Она была основана еще на одном мысленном эксперименте. Представьте объект в состоянии покоя, говорил он. Теперь представьте, что тот одновременно испускает два идентичных импульса света в противоположных направлениях. Объект будет оставаться на месте, но поскольку каждый импульс уносит определенное количество энергии, заключенная в объекте энергия будет уменьшаться.

Теперь, писал Эйнштейн, как будет выглядеть этот процесс для движущегося наблюдателя? С его точки зрения, объект просто будет продолжать двигаться по прямой линии, в то время как два импульса будут улетать. Но даже если скорость двух импульсов будет оставаться прежней — скоростью света — их энергии будут разными. Импульс, который движется вперед по направлению движения, будет иметь более высокую энергию, чем тот, что движется в обратном направлении.

Добавив немного алгебры, Эйнштейн показал, что для того, чтобы все это было последовательным, объект должен не только терять энергию при отправке световых импульсов, но и массу. Или же масса и энергия должны быть взаимозаменяемы. Эйнштейн записал уравнение, которое их связывает. И оно стало самым знаменитым уравнением в истории науки: E = mc 2 .

Источник

Теория относительности Эйнштейна

Кто бы мог подумать, что мелкий почтовый служащий изменит основы науки своего времени? Но такое случилось! Теория относительности Эйнштейна заставила пересмотреть привычный взгляд на устройство Вселенной и открыла новые области научного познания.

Большинство научных открытий сделано с помощью эксперимента: ученые повторяли свои опыты много раз, чтобы быть уверенными в их результатах. Работы обычно проводились в университетах или исследовательских лабораториях больших компаний.

Альберт Эйнштейн полностью изменил научную картину мира, не проведя ни одного практического эксперимента. Его единственными инструментами были бумага и ручка, а все эксперименты он проводил в голове.

Движущийся свет

В 1905 году Альберт Эйнштейн опубликовал свои первые статьи. В них шла речь о движении со скоростью, близкой к скорости света. Выдвинутая им теория получила название специальной теории относительности.

Альберт Эйнштейн
Альберт Эйнштейн (1879—1955) основывал все свои выводы но результатах «мысленного эксперимента». Эти эксперименты можно было совершить только в воображении.

Скорости всех движущихся тел относительны. Это означает, что все объекты движутся или остаются неподвижными только относительно какого-либо другого объекта. Например, человек, неподвижный относительно Земли, в то же время вращается вместе с Землей вокруг Солнца. Или допустим, что по вагону движущегося поезда идет человек в сторону движения со скоростью 3 км/час. Поезд движется со скоростью 60 км/час. Относительно неподвижного наблюдателя на земле скорость человека будет равна 63 км/час – скорость человека плюс скорость поезда. Если бы он шел против движения, то его скорость относительно неподвижного наблюдателя была бы равна 57 км/час.

Эйнштейн утверждал, что о скорости света так рассуждать нельзя. Скорость света всегда постоянна, независимо от того, приближается ли источник света к вам, удаляется от вас или стоит на месте.

Чем быстрее, тем меньше

С самого начала Эйнштейн выдвинул несколько удивительных предположений. Он утверждал, что, если скорость объекта приближается к скорости света, его размеры уменьшаются, а масса, наоборот, увеличивается. Никакое тело нельзя разогнать до скорости равной или большей скорости света.

Другой его вывод был еще удивительней и, казалось, противоречил здравому смыслу. Представьте, что из двоих близнецов один остался на Земле, а другой путешествовал по космосу со скоростью, близкой к скорости света. С момента старта на Земле прошло 70 лет. Согласно теории Эйнштейна, на борту корабля время течет медленнее, и там прошло, например, только десять лет. Получается, что тот из близнецов, кто оставался на Земле, стал на шестьдесят лет старше второго. Этот эффект называют «парадоксом близнецов». Звучит просто невероятно, но лабораторные эксперименты подтвердили, что замедление времени при скоростях, близких к скорости света, действительно существует.

Беспощадный вывод

Теория Эйнштейна также включает известную формулу E=mc 2 , в которой E – энергия, m – масса, а c – скорость света. Эйнштейн утверждал, что масса может превращаться в чистую энергию. В результате применения этого открытия в практической жизни появились атомная энергетика и ядерная бомба.

Эйнштейн был теоретиком

Эйнштейн был теоретиком. Эксперименты, которые должны были доказать правоту его теории, он оставлял другим. Многие из этих экспериментов было невозможно проделать до тех пор, пока не появились достаточно точные измерительные приборы.

Факты и события

  • Был произведен следующий эксперимент: самолет, на котором были установлены очень точные часы, взлетел и, облетев с большой скоростью вокруг Земли, опустился в той же точке. Часы, находившиеся на борту самолета, на ничтожную долю секунды отстали от часов, которые оставались на Земле.
  • Если в лифте, падающем с ускорением свободного падения, уронить шар, то шар не будет падать, а как бы зависнет в воздухе. Это происходит потому, что шар и лифт падают с одинаковой скоростью.
  • Эйнштейн доказал, что тяготение влияет на геометрические свойства пространства-времени, которое в свою очередь влияет на движение тел в этом пространстве. Так, два тела, начавшие движение параллельно друг другу, в конце концов встретятся в одной точке.

Искривляя время и пространство

Десятью годами позже, в 1915—1916 годах, Эйнштейн построил новую теорию гравитации, названную им общей теорией относительности. Он утверждал, что ускорение (изменение скорости) действует на тела так же, как и сила гравитации. Космонавт не может по своим ощущениям определить, притягивает ли его большая планета, или ракета начала тормозить.

Искажение времени

Если космический корабль разгоняется до скорости, близкой к скорости света, то часы на нем замедляются. Чем быстрее движется корабль, тем медленнее идут часы.

Отличия ее от ньютоновской теории тяготения проявляются при изучении космических объектов с огромной массой, например планет или звезд. Эксперименты подтвердили искривление лучей света, проходящих вблизи тел с большой массой. В принципе возможно столь сильное гравитационное поле, что свет не сможет выйти за его пределы. Это явление получило название «черной дыры». «Черные дыры», по-видимому, обнаружены в составе некоторых звездных систем.

Ньютон утверждал, что орбиты планет вокруг Солнца фиксированы. Теория Эйнштейна предсказывает медленный дополнительный поворот орбит планет, связанный с наличием гравитационного поля Солнца. Предсказание подтвердилось экспериментально. Это было поистине эпохальное открытие. В закон всемирного тяготения сэра Исаака Ньютона были внесены поправки.

Начало гонки вооружений

Работы Эйнштейна дали ключ ко многим тайнам природы. Они оказали влияние на развитие многих разделов физики, от физики элементарных частиц до астрономии – науки о строении Вселенной.

Эйнштейн в своей жизни занимался не только теорией. В 1914 году он стал директором института физики в Берлине. В 1933 году, когда к власти в Германии пришли нацисты, ему, как еврею, пришлось уехать из этой страны. Он переехал в США.

В 1939 году, несмотря на то что он был противником войны, Эйнштейн написал президенту Рузвельту письмо, в котором предупреждал его, что можно сделать бомбу, обладающую огромной разрушительной силой, и что фашистская Германия уже приступила к разработке такой бомбы. Президент отдал распоряжение начать работы. Это положило начало гонке вооружений.

Источник